login
A341318
Lower triangular table of products in the semigroup S = {(0,0), (i,j): i >= j >= 1} (see Comments for precise definition), read by rows.
4
0, 0, 1, 0, 2, 7, 0, 3, 8, 10, 0, 4, 16, 17, 37, 0, 5, 17, 19, 38, 40, 0, 6, 18, 21, 39, 42, 45, 0, 7, 29, 30, 67, 68, 69, 121, 0, 8, 30, 32, 68, 70, 72, 122, 124, 0, 9, 31, 34, 69, 72, 75, 123, 126, 129, 0, 10, 32, 36, 70, 74, 78, 124, 128, 132, 136, 0, 11, 46, 47, 106, 107, 108, 191, 192, 193, 194, 301
OFFSET
0,5
COMMENTS
Consider the semigroup S consisting of the pairs (0,0) and {(i,j): i >= j >= 1}, with componentwise products. Label the elements 0 = (0,0), 1 = (1,1), 2 = (2,1), 3 = (2,2), 4 = (3,1), 5 = (3,2), 6 = (3,3), 7 = (4,1), ... The triangle gives T(n,k) = label of product of n-th and k-th elements, for n>=k>=0.
See A341317 for further information, including a Maple program.
LINKS
EXAMPLE
Triangle begins:
0, [0]
1, [0, 1]
2, [0, 2, 7]
3, [0, 3, 8, 10]
4, [0, 4, 16, 17, 37]
5, [0, 5, 17, 19, 38, 40]
6, [0, 6, 18, 21, 39, 42, 45]
7, [0, 7, 29, 30, 67, 68, 69, 121]
8, [0, 8, 30, 32, 68, 70, 72, 122, 124]
9, [0, 9, 31, 34, 69, 72, 75, 123, 126, 129]
10, [0, 10, 32, 36, 70, 74, 78, 124, 128, 132, 136]
...
MAPLE
t:= n-> n*(n-1)/2:
f:= n-> ceil((sqrt(1+8*n)-1)/2):
g:= n-> (x-> [x, n-t(x)][])(f(n)):
T:= (n, k)-> (h-> t(h[1]*h[3])+h[2]*h[4])(map(g, [n, k])):
seq(seq(T(n, k), k=0..n), n=0..12); # Alois P. Heinz, Feb 17 2021
MATHEMATICA
t[n_] := n*(n - 1)/2;
f[n_] := Ceiling[(Sqrt[1 + 8*n] - 1)/2];
g[n_] := Function[x, {x, n - t[x]}][f[n]];
T[n_, k_] := (Function[h, t[h[[1]]*h[[3]]] + h[[2]]*h[[4]]])[Flatten @ Map[g, {n, k}]];
Table[Table[T[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Feb 26 2022, after Alois P. Heinz *)
CROSSREFS
Main diagonal gives A341736.
Sequence in context: A200680 A260129 A350763 * A332324 A101689 A175292
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Feb 17 2021
STATUS
approved