login
A341258
Concatenation of all 01-words, in the order induced by A000201; see Comments.
19
0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0
OFFSET
1
COMMENTS
Let s = (s(n)) be a strictly increasing sequence of positive integers with infinite complement, t = (t(n)). For n >=1, let s'(n) be the number of s(i) that are <= n-1 and let t'(n) be the number of t(i) that are <= n-1. Define w(1) = 0, w(t(1)) = 1, and w(n) = 0w(s'(n)) if n is in s, and w(n) = 1w(t'(n)) if n is in t. Then (w(n)) is the "s-induced ordering" of all 01-words.
s = A000201; t = A001950; s' = A005206; t' = A060144;
For a guide to related sequences, see the Mathematica program and A341256.
EXAMPLE
The first 20 words: 0,1,00,01,10,000,11,001,010,100,0000,011,101,0001,110,0010,0100,1000,00000,111.
MATHEMATICA
z = 250; r = GoldenRatio;
"The sequence s; " (* A000201 *)
s = Table[Floor[n r], {n, 1, z}]
"The sequence t:" (* A001950 *)
t = Complement[Range[Max[s]], s]
s1[n_] := Length[Intersection[Range[n - 1], s]];
t1[n_] := n - 1 - s1[n];
"The sequence s1: A005206"
Table[s1[n], {n, 1, z}]
"The sequence t1: A060144"
Table[t1[n], {n, 1, z}]
w[1] = {0}; w[t[[1]]] = {1};
w[n_] := If[MemberQ[s, n], Join[{0}, w[s1[n]]], Join[{1}, w[t1[n]]]]
"List tt of all binary words:"
tt = Table[w[n], {n, 1, z}] (* all the binary words *)
"All the words, concatenated:"
Flatten[tt] (* A341258 words, concatenated *)
"Map of Union onto the words:"
Map[Union, tt]
"Length of w[n]: A112310"
Map[Length, tt]
"Positions of words in which #0's = #1's: A344950"
"This and the next two sequences partition N."
Select[Range[Length[tt]],
Count[tt[[#]], 0] == Count[tt[[#]], 1] &]
"Positions of words in which #0's < #1's: A344951"
Select[Range[Length[tt]], Count[tt[[#]], 0] < Count[tt[[#]], 1] &]
"Positions of words in which #0's > #1's: A344952"
Select[Range[Length[tt]], Count[tt[[#]], 0] > Count[tt[[#]], 1] &]
"Positions of words ending with 0: A133512 send comment"
Select[Range[Length[tt]], Last[tt[[#]]] == 0 &]
"Positions of words ending with 1: A344953"
Select[Range[Length[tt]], Last[tt[[#]]] == 1 &]
"Positions of words starting and ending with same digit: A344954"
Select[Range[Length[tt]], First[tt[[#]]] == Last[tt[[#]]] &]
"Positions of words starting and ending with opposite digits: A344955"
Select[Range[Length[tt]], First[tt[[#]]] != Last[tt[[#]]] &]
"Positions of words starting with 0 and ending with 0: A344956"
Select[Range[Length[tt]],
First[tt[[#]]] == 0 && Last[tt[[#]]] == 0 &]
"Positions of words starting with 0 and ending with 1: A344957"
Select[Range[Length[tt]],
First[tt[[#]]] == 0 && Last[tt[[#]]] == 1 &]
"Positions of words starting with 1 and ending with 0: A344958"
Select[Range[Length[tt]],
First[tt[[#]]] == 1 && Last[tt[[#]]] == 0 &]
"Positions of words starting with 1 and ending with 1: A344959"
Select[Range[Length[tt]],
First[tt[[#]]] == 1 && Last[tt[[#]]] == 1 &]
"Position of n-th positive integer (base 2) in tt: A344988"
d[n_] := If[First[w[n]] == 1, FromDigits[w[n], 2]];
Flatten[Table[Position[Table[d[n], {n, 1, 200}], n], {n, 1, 200}]]
"Position of binary complement of w(n): A344960"
comp = Flatten[Table[Position[tt, 1 - w[n]], {n, 1, 100}]]
"Sum of digits of w(n): A206650"
Table[Total[w[n]], {n, 1, 100}]
"Number of runs in w(n): A344961"
Map[Length, Table[Map[Length, Split[w[n]]], {n, 1, 100}]]
"Palindromes:"
Select[tt, # == Reverse[#] &]
"Positions of palindromes: A341333"
Select[Range[Length[tt]], tt[[#]] == Reverse[tt[[#]]] &]
"Positions of words in which #0's - #1's is odd: A095879"
Select[Range[Length[tt]],
OddQ[Count[w[#], 0] - Count[w[#], 1]] &]
"Positions of words in which #0's - #1's is even: A095880"
Select[Range[Length[tt]], EvenQ[Count[w[#], 0] - Count[w[#], 1]] &]
"Position of the reversal of the n-th word: A344962"
u21 = Flatten[Table[Position[tt, Reverse[w[n]]], {n, 1, 150}]]
KEYWORD
nonn
AUTHOR
Clark Kimberling, Mar 16 2021
STATUS
approved