login
A341139
Number of ways to write n as an ordered sum of 10 prime powers (including 1).
7
1, 10, 55, 220, 715, 1992, 4915, 10990, 22660, 43660, 79463, 137830, 229460, 368710, 574410, 870644, 1287545, 1862110, 2639135, 3672050, 5024035, 6768950, 8992340, 11792070, 15279450, 19579514, 24832415, 31193900, 38837085, 47952400, 58750125, 71458860, 86328885
OFFSET
10,2
MAPLE
q:= proc(n) option remember; nops(ifactors(n)[2])<2 end:
b:= proc(n, t) option remember;
`if`(n=0, `if`(t=0, 1, 0), `if`(t<1, 0, add(
`if`(q(j), b(n-j, t-1), 0), j=1..n)))
end:
a:= n-> b(n, 10):
seq(a(n), n=10..42); # Alois P. Heinz, Feb 05 2021
MATHEMATICA
nmax = 42; CoefficientList[Series[Sum[Boole[PrimePowerQ[k] || k == 1] x^k, {k, 1, nmax}]^10, {x, 0, nmax}], x] // Drop[#, 10] &
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Feb 05 2021
STATUS
approved