login
A341132
Number of partitions of n into 2 distinct prime powers (including 1).
10
1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 3, 3, 3, 3, 3, 4, 3, 5, 4, 3, 2, 5, 3, 4, 4, 5, 3, 6, 3, 6, 5, 6, 4, 7, 2, 5, 4, 6, 3, 6, 3, 6, 5, 5, 2, 8, 3, 7, 4, 6, 2, 8, 3, 7, 4, 5, 2, 8, 3, 6, 4, 6, 3, 9, 2, 8, 5, 7, 2, 10, 3, 7, 6, 7, 3, 9, 2, 9, 4, 6, 4, 11, 3, 8, 4, 7, 3, 12
OFFSET
3,3
MAPLE
q:= proc(n) option remember; nops(ifactors(n)[2])<2 end:
b:= proc(n, i, t) option remember; `if`(n=0,
`if`(t=0, 1, 0), `if`(i<1 or t<1, 0, b(n, i-1, t)+
`if`(q(i), b(n-i, min(n-i, i-1), t-1), 0)))
end:
a:= n-> b(n$2, 2):
seq(a(n), n=3..90); # Alois P. Heinz, Feb 05 2021
MATHEMATICA
q[n_] := q[n] = PrimeNu[n] < 2;
b[n_, i_, t_] := b[n, i, t] = If[n == 0,
If[t == 0, 1, 0], If[i < 1 || t < 1, 0, b[n, i - 1, t] +
If[q[i], b[n - i, Min[n - i, i - 1], t - 1], 0]]];
a[n_] := b[n, n, 2];
Table[a[n], {n, 3, 90}] (* Jean-François Alcover, Jul 13 2021, after Alois P. Heinz *)
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Feb 05 2021
STATUS
approved