login
A341115
Numbers k such that k*2^101 + 1 is a prime factor of 10^(10^100) + 1.
1
125000, 61298400, 578869250, 4511718750, 195312500000, 2918554687500, 3874552343750
OFFSET
1,1
COMMENTS
Every prime factor of 10^(10^100) + 1 is of the given form (k == 1 (mod 2^101)).
If k is not divisible by 10, then k == 1,3,4 (mod 10), and k*2^101 + 1 divides 10^(2^100) + 1.
If 1 <= j <= 99 and k is not divisible by 5^(j+1), then k*2^101 + 1 divides 10^(2^100*5^j) + 1.
No other terms below 4*10^12. Other known terms in this sequence are 397299146187500, 194585800170898437500, 3163315773010253906250, 3274180926382541656494140625000, 128238752949982881546020507812500, 13940493204245285596698522567749023437500, 61902333925445418572053313255310058593750, 146251500493521646717454132158309221267700195312500.
EXAMPLE
The smallest prime factor of 10^10^100 + 1 is 125000*2^100 + 1 = 316912650057057350374175801344000001.
PROG
(Python)
A341115_list, k, m, l, n = [], 1, 2**101, 2**101+1, 10**100
while k < 10**6:
if pow(10, n, l) == l-1:
A341115_list.append(k)
print(len(A341115_list), k)
k += 1
l += m # Chai Wah Wu, Mar 28 2021
CROSSREFS
Cf. A341116 (corresponding primes), A072288.
Sequence in context: A282919 A100406 A351948 * A183797 A234783 A206134
KEYWORD
nonn,fini,hard,more
AUTHOR
Yan Sheng Ang, Feb 05 2021
STATUS
approved