%I #17 Feb 27 2021 21:50:32
%S 1,2,722,837158,77228318,5436980738,49637737974482,
%T 462761120757722506058,2836540596515452087502,
%U 37216095020093890760397134162,1858485134141860820807351059562927114738,42507485681147639763501995374671391449914
%N Incrementally largest values of minimal y satisfying the equation x^2 - D*y^2 = -3, where D is a prime number.
%H Christine Patterson, <a href="/A341078/a341078.txt">COCALC (Sage) Program</a>
%e From _Jon E. Schoenfield_, Feb 23 2021: (Start)
%e As D runs through the primes, the minimal y values satisfying the equation x^2 - D*y^2 = -3 begin as follows:
%e .
%e x values satisfying minimal
%e D x^2 - D*y^2 = -5 y value record
%e -- ---------------------- ------- ------
%e 2 (none)
%e 3 1, 2, 7, 26, 97, ... 1 *
%e 5 (none)
%e 7 1, 2, 14, 31, 223, ... 1
%e 11 (none)
%e 13 2, 38, 2558, ... 2 *
%e 17 (none)
%e 19 1, 14, 326, 4759, ... 1
%e 23 (none)
%e 29 (none)
%e 31 2, 37, 604, ... 2
%e 37 (none)
%e 41 (none)
%e 43 2, 61, 13867, ... 2
%e 47 (none)
%e 53 (none)
%e 59 (none)
%e 61 722, 60158, ... 722 *
%e ...
%e The record high minimal values of y (marked with asterisks) are the terms of this sequence. The corresponding values of D are the terms of A341077. (End)
%Y Cf. A033315, A341077.
%K nonn
%O 1,2
%A _Christine Patterson_, Feb 04 2021
%E Edited by _Jon E. Schoenfield_, Feb 23 2021