login
A340970
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where T(n,k) = Sum_{j=0..n} k^j*binomial(n,j)*binomial(2*j,j).
4
1, 1, 1, 1, 3, 1, 1, 5, 11, 1, 1, 7, 33, 45, 1, 1, 9, 67, 245, 195, 1, 1, 11, 113, 721, 1921, 873, 1, 1, 13, 171, 1593, 8179, 15525, 3989, 1, 1, 15, 241, 2981, 23649, 95557, 127905, 18483, 1, 1, 17, 323, 5005, 54691, 361449, 1137709, 1067925, 86515, 1
OFFSET
0,5
LINKS
FORMULA
G.f. of column k: 1/sqrt((1 - x) * (1 - (4*k+1)*x)).
T(n,k) = [x^n] (1+(2*k+1)*x+(k*x)^2)^n.
n * T(n,k) = (2*k+1) * (2*n-1) * T(n-1,k) - (4*k+1) * (n-1) * T(n-2,k) for n > 1.
E.g.f. of column k: exp((2*k+1)*x) * BesselI(0,2*k*x). - Ilya Gutkovskiy, Feb 01 2021
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, ...
1, 3, 5, 7, 9, 11, ...
1, 11, 33, 67, 113, 171, ...
1, 45, 245, 721, 1593, 2981, ...
1, 195, 1921, 8179, 23649, 54691, ...
1, 873, 15525, 95557, 361449, 1032801, ...
MATHEMATICA
T[n_, k_] := Sum[If[j == k == 0, 1, k^j] * Binomial[n, j] * Binomial[2*j, j], {j, 0, n}]; Table[T[k, n - k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, Feb 01 2021 *)
PROG
(PARI) {T(n, k) = sum(j=0, n, k^j*binomial(n, j)*binomial(2*j, j))}
(PARI) {T(n, k) = polcoef((1+(2*k+1)*x+(k*x)^2)^n, n)}
CROSSREFS
Columns k=0..3 give A000012, A026375, A084771, A340973.
Rows n=0..2 give A000012, A005408, A080859.
Main diagonal gives A340971.
Cf. A340968.
Sequence in context: A362078 A123162 A213998 * A294946 A083075 A335333
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, Feb 01 2021
STATUS
approved