login
A340953
Number of ways to write n as an ordered sum of 8 nonzero triangular numbers.
9
1, 0, 8, 0, 28, 8, 56, 56, 70, 176, 84, 336, 196, 448, 492, 504, 953, 616, 1456, 960, 1814, 1792, 1904, 3032, 2100, 4144, 3052, 4768, 4670, 5264, 6720, 5936, 8876, 7112, 10620, 9648, 11718, 12720, 13216, 15960, 15261, 19608, 17164, 23296, 21226, 25424, 26796, 27272, 32844
OFFSET
8,3
LINKS
FORMULA
G.f.: (theta_2(sqrt(x)) / (2 * x^(1/8)) - 1)^8, where theta_2() is the Jacobi theta function.
MAPLE
b:= proc(n, k) option remember; local r, t, d; r, t, d:= $0..2;
if n=0 then `if`(k=0, 1, 0) else
while t<=n do r:= r+b(n-t, k-1); t, d:= t+d, d+1 od; r fi
end:
a:= n-> b(n, 8):
seq(a(n), n=8..56); # Alois P. Heinz, Jan 31 2021
MATHEMATICA
nmax = 56; CoefficientList[Series[(EllipticTheta[2, 0, Sqrt[x]]/(2 x^(1/8)) - 1)^8, {x, 0, nmax}], x] // Drop[#, 8] &
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jan 31 2021
STATUS
approved