Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Mar 08 2021 12:10:10
%S 1,1,5,45,482,5665,70725,921174,12379878,170435921,2391736448,
%T 34089385297,492181254691,7183748957321,105830560089572,
%U 1571662656809121,23504719106546214,353701665355036178,5351873694519004045,81378581395212130011
%N G.f. A(x) satisfies: Sum_{n>=0} x^n*A(x)^(4*n)/(1 - x*A(x)^n) = Sum_{n>=0} x^n*A(x)^n/(1 - x*A(x)^(4*n+3)).
%C Equals row k = 4 of rectangular table A340940.
%F Given g.f. A(x), the following sums are all equal:
%F (1) B(x) = Sum_{n>=0} x^n*A(x)^(4*n)/(1 - x*A(x)^n),
%F (2) B(x) = Sum_{n>=0} x^n*A(x)^(3*n)/(1 - x*A(x)^(4*n+1)),
%F (3) B(x) = Sum_{n>=0} x^n*A(x)^n/(1 - x*A(x)^(4*n+3)),
%F (4) B(x) = Sum_{n>=0} x^n/(1 - x*A(x)^(n+4)),
%F (5) B(x) = Sum_{n>=0} x^(2*n) * A(x)^(n^2+4*n) * (1 - x^2*A(x)^(2*n+4)) / ((1 - x*A(x)^n)*(1 - x*A(x)^(n+4))),
%F (6) B(x) = Sum_{n>=0} x^(2*n) * A(x)^(4*n^2+4*n) * (1 - x^2*A(x)^(8*n+4)) / ((1 - x*A(x)^(4*n+1))*(1 - x*A(x)^(4*n+3)));
%F see the example section for the value of B(x).
%e G.f.: A(x) = 1 + x + 5*x^2 + 45*x^3 + 482*x^4 + 5665*x^5 + 70725*x^6 + 921174*x^7 + 12379878*x^8 + 170435921*x^9 + 2391736448*x^10 + ...
%e such that
%e B(x) = 1/(1-x) + x*A(x)^4/(1 - x*A(x)) + x^2*A(x)^8/(1 - x*A(x)^2) + x^3*A(x)^12/(1 - x*A(x)^3) + x^4*A(x)^16/(1 - x*A(x)^4) + ...
%e and
%e B(x) = 1/(1 - x*A(x)) + x*A(x)^3/(1 - x*A(x)^5) + x^2*A(x)^6/(1 - x*A(x)^9) + x^3*A(x)^9/(1 - x*A(x)^13) + x^4*A(x)^12/(1 - x*A(x)^17) + ...
%e also
%e B(x) = 1/(1 - x*A(x)^3) + x*A(x)/(1 - x*A(x)^7) + x^2*A(x)^2/(1 - x*A(x)^11) + x^3*A(x)^3/(1 - x*A(x)^15) + x^4*A(x)^4/(1 - x*A(x)^19) + ...
%e further,
%e B(x) = 1/(1 - x*A(x)^4) + x/(1 - x*A(x)^5) + x^2/(1 - x*A(x)^6) + x^3/(1 - x*A(x)^7) + x^4/(1 - x*A(x)^8) + ...
%e where
%e B(x) = 1 + 2*x + 7*x^2 + 43*x^3 + 380*x^4 + 4032*x^5 + 47234*x^6 + 588683*x^7 + 7657593*x^8 + 102796547*x^9 + 1413743374*x^10 + ...
%o (PARI) {a(n) = my(A=[1, 1]); for(i=1, n, A=concat(A, 0); H=A; A=concat(A, 0);
%o H[#A-1] = -polcoeff( sum(m=0, #A, x^m/(1 - x*Ser(A)^(m+4)) ) - sum(m=0, #A, x^m*Ser(A)^m/(1 - x*Ser(A)^(4*m+3)) ), #A)/3; A=H); A[n+1] }
%o for(n=0, 30, print1(a(n), ", "))
%Y Cf. A340940, A340941, A340942, A340894, A340895, A341376.
%K nonn
%O 0,3
%A _Paul D. Hanna_, Feb 04 2021