OFFSET
1,1
COMMENTS
The prime k-tuples conjecture implies that, for example, there are infinitely many k for which the matrix is of the form [x, x+4, x+10; x+22, x+24, x+30; x+34, x+36, x+42], in which case the determinant is 12^2.
LINKS
Robert Israel, Table of n, a(n) for n = 1..3000
EXAMPLE
a(3) = 12 because A340869(3) = 14 and the determinant of the 3 X 3 matrix [43, 47, 53; 59, 61, 67; 71, 73, 79] composed of prime(14) to prime(22) in order (by rows or columns) is 144 = 12^2.
MAPLE
f:= proc(n) local i, t;
t:= LinearAlgebra:-Determinant(Matrix(3, 3, [seq(ithprime(i), i=n..n+8)]));
if issqr(t) then sqrt(t) fi
end proc:
map(f, [$1..10000]);
MATHEMATICA
m = 10^4; p = Prime[Range[m + 8]]; Select[Table[Sqrt @ Det @ Partition[p[[n ;; n + 8]], 3], {n, 1, m}], IntegerQ] (* Amiram Eldar, Jan 25 2021 *)
PROG
(PARI) f(n) = matdet(matrix(3, 3, i, j, prime((n+j-1)+3*(i-1)))); \\ A117330
lista(nn) = my(x); for (n=1, nn, if (issquare(f(n), &x), print1(x, ", "))); \\ Michel Marcus, Jan 25 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Jan 24 2021
STATUS
approved