login
A340871
Primes p such that p, p + 1, p + 2 and p + 3 have 2, 4, 6 and 8 divisors respectively.
2
421, 30661, 50821, 54421, 130021, 195541, 423781, 635461, 1003381, 1577941, 1597381, 1883941, 2070421, 2100661, 2162581, 2534821, 2585941, 2666581, 2851621, 3296581, 3658021, 3800581, 4657381, 4969141, 5739541, 5962741, 6188821, 6537301, 6556741, 7090261
OFFSET
1,1
COMMENTS
Primes from A340157.
Term 1524085621 is the smallest prime p such that p, p + 1, p + 2, p + 3 and p + 4 have 2, 4, 6, 8 and 10 divisors respectively. No such run exists for any 6 consecutive integers with prime p with this property (see A294528).
EXAMPLE
tau(421) = 2, tau (422) = 4, tau (423) = 6, tau (424) = 8.
MATHEMATICA
Select[Range[10^6], DivisorSigma[0, # + {0, 1, 2, 3}] == {2, 4, 6, 8} &] (* Amiram Eldar, Jan 25 2021 *)
Select[Prime[Range[490000]], DivisorSigma[0, #+{1, 2, 3}]=={4, 6, 8}&] (* Harvey P. Dale, Oct 02 2021 *)
PROG
(Magma) [m: m in [1..10^7] | IsPrime(m) and #Divisors(m + 1) eq 4 and #Divisors(m + 2) eq 6 and #Divisors(m + 3) eq 8]
CROSSREFS
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Jan 24 2021
STATUS
approved