login
A340839
Decimal expansion of Mertens constant C(5,1).
8
1, 2, 2, 5, 2, 3, 8, 4, 3, 8, 5, 3, 9, 0, 8, 4, 5, 8, 0, 0, 5, 7, 6, 0, 9, 7, 7, 4, 7, 4, 9, 2, 2, 0, 5, 2, 7, 5, 4, 0, 5, 9, 5, 5, 0, 9, 3, 9, 1, 6, 4, 9, 9, 3, 8, 7, 6, 7, 3, 3, 3, 6, 4, 4, 3, 0, 2, 6, 7, 3, 1, 4, 2, 9, 6, 4, 4, 1, 7, 6, 1, 9, 2, 7, 3, 8, 4, 1, 6, 1, 9, 5, 6, 2, 7, 3, 6, 5, 2, 9, 5, 6, 6, 7, 5, 6, 7, 9, 6, 2, 7, 9, 0, 4, 2, 5, 9, 6, 3, 2, 4, 0, 2, 1, 1, 0, 0, 4, 8, 0, 7, 6, 8, 7, 9, 3, 3, 7, 6, 5, 5, 0, 4, 6, 7, 8, 7, 4, 2, 6, 0, 3, 2, 5, 0, 1, 1, 5, 3
OFFSET
1,2
COMMENTS
Data taken from Alessandro Languasco and Alessandro Zaccagnini 2007.
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.2 Meissel-Mertens constants (pp. 94-95)
LINKS
Alessandro Languasco and Alessandro Zaccagnini, On the constant in the Mertens product for arithmetic progressions. II: Numerical values, Math. Comp. 78 (2009), 315-326.
Alessandro Languasco and Alessandro Zaccagnini, Computation of the Mertens constants - more than 100 correct digits, (2007), 1-134 (digital data relative to the previous paper). [in this table on page 4, the last correct digit is a(109), beyond the level there certified. - Vaclav Kotesovec, Jan 26 2021]
Alessandro Languasco and Alessandro Zaccagnini, Computation of the Mertens constants mod q; 3 <= q <= 100, (2007) (GP-PARI procedure 100 digits accuracy).
Alessandro Languasco and Alessandro Zaccagnini, On the constant in the Mertens product for arithmetic progressions. I. Identities., Funct. Approx. Comment. Math. Volume 42, Number 1 (2010), 17-27.
For other links see A340711.
FORMULA
A = C(5,1)=1.225238438539084580057609774749220527540595509391649938767...
B = C(5,2)=0.546975845411263480238301287430814037751996324100819295153...
C = C(5,3)=0.805951040448267864057376860278430932081288114939010897934...
D = C(5,4)=1.299364547914977988160840014964265909502574970408329662016...
A*B*C*D = 0.70182435445860646228... = (5/4)*exp(-gamma), where gamma is the Euler-Mascheroni constant A001620.
Formula from the article by Languasco and Zaccagnini, 2010, p.9:
A = ((13*sqrt(5)*Pi^2*exp(-gamma))/(150*log((1+sqrt(5))/2))*A340628/A340808)^(1/4).
EXAMPLE
1.225238438539084580057609774749220527540595509391649938767...
KEYWORD
nonn,cons
AUTHOR
Artur Jasinski, Jan 23 2021
EXTENSIONS
Last 11 digits corrected by Vaclav Kotesovec, Jan 25 2021
More digits from Vaclav Kotesovec, Jan 26 2021
STATUS
approved