login
A340790
Pythagorean triples (X, Y, Z) that are the componentwise products of 2 primitive Pythagorean triples (x,y,z) and (r,s,t), that is, X=x*r, Y=y*s, ordered by increasing Z.
0
1120, 5544, 5656, 5040, 5775, 7665, 935, 7920, 7975, 1716, 9360, 9516, 11700, 44880, 46380, 14040, 53856, 55656, 17325, 100320, 101805, 3315, 107712, 107763, 70560, 96525, 119565, 11088, 132825, 133287, 30240, 141284, 144484, 47424, 150480, 157776, 106227, 237120, 259827
OFFSET
1,1
LINKS
Lorenz Halbeisen and Norbert Hungerbühler, Pairing Pythagorean Pairs, arXiv:2101.08163 [math.NT], 2021.
EXAMPLE
[7, 24, 25] X [160, 231, 281] = [7*160, 24*25, 5656] = [1120, 5544, 5656].
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Michel Marcus, Jan 21 2021
STATUS
approved