%I #10 Feb 09 2021 02:45:59
%S 2,3,5,6,7,9,11,13,14,17,19,20,21,23,26,29,30,31,35,37,38,39,41,43,45,
%T 47,49,50,52,53,56,57,58,59,61,65,67,71,73,74,75,78,79,83,84,86,87,89,
%U 91,92,95,97,101,103,106,107,109,111,113,117,122,125,126,127
%N Numbers whose number of prime factors (A001222) divides their greatest prime index (A061395).
%C A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%H Robert Israel, <a href="/A340610/b340610.txt">Table of n, a(n) for n = 1..10000</a>
%F A001222(a(n)) divides A061395(a(n)).
%e The sequence of terms together with their prime indices begins:
%e 2: {1} 29: {10} 56: {1,1,1,4}
%e 3: {2} 30: {1,2,3} 57: {2,8}
%e 5: {3} 31: {11} 58: {1,10}
%e 6: {1,2} 35: {3,4} 59: {17}
%e 7: {4} 37: {12} 61: {18}
%e 9: {2,2} 38: {1,8} 65: {3,6}
%e 11: {5} 39: {2,6} 67: {19}
%e 13: {6} 41: {13} 71: {20}
%e 14: {1,4} 43: {14} 73: {21}
%e 17: {7} 45: {2,2,3} 74: {1,12}
%e 19: {8} 47: {15} 75: {2,3,3}
%e 20: {1,1,3} 49: {4,4} 78: {1,2,6}
%e 21: {2,4} 50: {1,3,3} 79: {22}
%e 23: {9} 52: {1,1,6} 83: {23}
%e 26: {1,6} 53: {16} 84: {1,1,2,4}
%p filter:= proc(n) local F,m,g,t;
%p F:= ifactors(n)[2];
%p m:= add(t[2],t=F);
%p g:= numtheory:-pi(max(seq(t[1],t=F)));
%p g mod m = 0;
%p end proc:
%p select(filter, [$2..1000]); # _Robert Israel_, Feb 08 2021
%t Select[Range[2,100],Divisible[PrimePi[FactorInteger[#][[-1,1]]],PrimeOmega[#]]&]
%Y Note: Heinz numbers are given in parentheses below.
%Y The case of equality is A047993 (A106529).
%Y The case where all parts are multiples, not just the maximum part, is A143773 (A316428), with strict case A340830, while the case of factorizations is A340853.
%Y These are the Heinz numbers of certain partitions counted by A168659.
%Y The reciprocal version is A340609.
%Y The squarefree case is A340828 (A340856).
%Y A001222 counts prime factors.
%Y A006141 counts partitions whose length equals their minimum (A324522).
%Y A056239 adds up prime indices.
%Y A061395 selects the maximum prime index.
%Y A067538 counts partitions whose length divides their sum (A316413).
%Y A067538 counts partitions whose maximum divides their sum (A326836).
%Y A112798 lists the prime indices of each positive integer.
%Y A200750 counts partitions with length coprime to maximum (A340608).
%Y A325134 = A001222 + A061395.
%Y A326845 = A056239 * A061395.
%Y Cf. A244990/A244991, A326837, A326849 (A326848), A340653, A340691, A340693 (A340606), A340787/A340788.
%K nonn
%O 1,1
%A _Gus Wiseman_, Jan 27 2021