login
A340548
Integers whose number of repdigit divisors sets a new record.
10
1, 2, 4, 6, 12, 24, 66, 132, 264, 792, 3960, 14652, 26664, 29304, 79992, 146520, 399960, 1025640, 2666664, 7999992, 13333320, 39999960, 269333064, 807999192, 1346665320, 4039995960, 28279971720, 7999999999992, 8080799919192, 13333333333320, 13467999865320, 39999999999960, 40403999595960
OFFSET
1,2
COMMENTS
The first 10 terms are the same as A093036, then A093036(11) = 1848 while a(11) = 3960, because from a(1) to a(10), all palindromic divisors are also repdigits, and then 616 is a non-repdigit palindromic divisor of 1848.
Number of repdigit divisors: 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 17, 18, ...
Indices of repdigits: 1, 2, 3, 4, 7, ...
LINKS
David A. Corneth, Table of n, a(n) for n = 1..53 (terms <= 10^30).
EXAMPLE
132 has 12 divisors: {1, 2, 3, 4, 6, 11, 12, 22, 33, 44, 66, 132} of which 10 are repdigits: {1, 2, 3, 4, 6, 11, 22, 33, 44, 66}. No positive integer smaller than 132 has as many as ten repdigit divisors; hence 132 is a term.
MATHEMATICA
repQ[n_] := Length @ Union @ IntegerDigits[n] == 1; s[n_] := DivisorSum[n, 1 &, repQ[#] &]; smax = 0; seq = {}; Do[s1 = s[n]; If[s1 > smax, smax = s1; AppendTo[seq, n]], {n, 1, 10^5}]; seq (* Amiram Eldar, Jan 11 2021 *)
PROG
(PARI) isrd(n) = {1 == #Set(digits(n))}; \\ A010785
f(n) = sumdiv(n, d, isrd(d));
lista(nn) = {my(m = 0); for (n=1, nn, my(x = f(n)); if (x > m, print1(n, ", "); m = x); ); } \\ Michel Marcus, Jan 11 2021
CROSSREFS
Similar for: A053624 (odd), A181808 (even), A093036 (palindromes), A340549 (repunits).
Sequence in context: A212654 A337993 A093036 * A087997 A355699 A340638
KEYWORD
nonn,base
AUTHOR
Bernard Schott, Jan 11 2021
EXTENSIONS
a(16)-a(20) from Michel Marcus, Jan 11 2021
a(21)-a(26) from Amiram Eldar, Jan 12 2021
a(27) from Chai Wah Wu, Jan 14 2021
More terms from David A. Corneth, Jan 15 2021
STATUS
approved