login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A340542 Number of Fibonacci divisors of Fibonacci(n)^2 + 1. 0
1, 2, 2, 2, 3, 3, 3, 4, 4, 3, 4, 4, 3, 5, 5, 3, 5, 5, 3, 5, 5, 3, 5, 6, 4, 5, 6, 4, 5, 5, 3, 5, 5, 5, 7, 5, 5, 7, 5, 3, 5, 5, 3, 7, 7, 3, 7, 8, 4, 5, 6, 4, 5, 7, 5, 5, 7, 5, 5, 5, 3, 7, 7, 5, 9, 7, 5, 7, 5, 3, 5, 5, 3, 7, 7, 5, 9, 7, 5, 8, 6, 3, 6, 8, 5, 5, 7 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

A Fibonacci divisor of a number k is a Fibonacci number that divides k.

It is interesting to compare this sequence with A339669.

We observe that a(2n) = A339669(2n) if n = 5*k + 2 or n = 5*k + 3, with k >= 0, because Lucas(2n)^2 = 5*Fibonacci(2n)^2 + 4 (see A005248: all nonnegative integer solutions of the Pell equation a(n)^2 - 5*b(n)^2 = +4 together with b(n)= A001906(n), n>=0. - from Wolfdieter Lang, Aug 31 2004).

So, Lucas(2n)^2 + 1 = 5*(Fibonacci(2n)^2 + 1). Lucas(2n)^2 + 1 and Fibonacci(2n)^2 + 1 have the same Fibonacci divisors for n = 5*k + 2 or n = 5*k + 3. For the other values of n = 5*k, 5*k + 1 or 5*k + 4, 5 is a Fibonacci divisor of Lucas(2n)^2 + 1 but not of Fibonacci(2n)^2 + 1. So for these last three values of n, a(2n) = A339669(2n) - 1 (except for m = 1 and 2, 5*F(m) is never a Fibonacci number).

LINKS

Table of n, a(n) for n=0..86.

EXAMPLE

a(13) = 5 because the 5 Fibonacci divisors of Fibonacci(13)^2 + 1 = 233^2 + 1 are 1, 2, 5, 89 and 610.

a(16) = 5 because the 5 Fibonacci divisors of Fibonacci(16)^2 + 1 = 987^2 + 1 are 1, 2, 5, 610, and 1597.

Remark: the 5 Fibonacci divisors of Lucas(16)^2 + 1 = 2207^2 + 1 are 1, 2, 5, 610, and 1597, the index 16 = 2*8 with 8 of the form 5*k + 3.

MAPLE

with(combinat, fibonacci):nn:=100:F:={}:

for k from 0 to nn do:

  F:=F union {fibonacci(k)}:

od:

   for m from 0 to 90 do:

    f:=fibonacci(m)^2+1:d:=numtheory[divisors](f):

    lst:= F intersect d: n1:=nops(lst):printf(`%d, `, n1):

   od:

PROG

(PARI) isfib(n) = my(k=n^2); k+=(k+1)<<2; issquare(k) || (n>0 && issquare(k-8)); \\ A010056

a(n) = sumdiv(fibonacci(n)^2+1, d, isfib(d)); \\ Michel Marcus, Jan 12 2021

CROSSREFS

Cf. A000032, A000045, A005248, A010056, A339461, A339669.

Sequence in context: A045864 A072302 A165360 * A283303 A280079 A116513

Adjacent sequences:  A340539 A340540 A340541 * A340543 A340544 A340545

KEYWORD

nonn

AUTHOR

Michel Lagneau, Jan 12 2021

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 18 07:31 EDT 2021. Contains 343072 sequences. (Running on oeis4.)