login
Number of domino tilings of a 16 X n rectangle.
3

%I #33 Jan 12 2021 19:18:50

%S 1,1,1597,29681,9475901,366944287,69289288909,3710708201969,

%T 540061286536921,34741645659770711,4337452956682508609,

%U 313196612952258199679,35457442115448212075033,2764079753958605286860951,293251198441417290172509377,24080184063411167042923575793

%N Number of domino tilings of a 16 X n rectangle.

%C Basically, for n = 1, 2, ..., 513, the terms a(n) are calculated by the double product formula in the program below, with the help of the authors' C# program using the BigInteger and BigFloat classes. (The computer calculations took 44 hours to complete.)

%C Alternatively, the value of a(513) is calculated by the homogeneous linear recurrence relation of order 256; the thus calculated value coincides with the one obtained by the classical double product formula. Furthermore, using the recurrence relation, the values of a(514), a(515), ..., a(10240) are also calculated. (The computer calculations took 4 minutes to complete.)

%D A. M. Magomedov, T. A. Magomedov, S. A. Lawrencenko, Mutually-recursive formulas for enumerating partitions of the rectangle (Russian, English summary), Prikl. Diskr. Mat., 46 (2019), 108-121.

%H Alois P. Heinz, <a href="/A340532/b340532.txt">Table of n, a(n) for n = 0..514</a>

%H M. E. Fisher, <a href="https://doi.org/10.1103/PhysRev.124.1664">Statistical mechanics of dimers on a plane lattice</a>, Phys. Rev. 124 (1961) 1664-1672.

%H P. W. Kasteleyn, <a href="https://doi.org/10.1016/0031-8914(61)90063-5">The statistics of dimers on a lattice</a>, Physica 27 (1961), 1209-1225.

%H P. W. Kasteleyn, <a href="https://doi.org/10.1063/1.1703953">Dimer statistics and phase transitions</a>, J. Math. Phys., 4 (1963), 287-293.

%H Viet-Ha Nguyen, Kévin Perrot, Mathieu Vallet, <a href="https://doi.org/10.1016/j.tcs.2020.04.007">NP-completeness of the game Kingdomino(TM)</a>, Theoretical Computer Science (2020) Vol. 822, 23-35. See also <a href="https://arxiv.org/abs/1909.02849">arXiv:1909.02849</a>, [cs.CC], 2019.

%F The sequence is completely defined by the following formula, which is a special case of a classical double product formula (A099390): a(n) = Product_{j=1..8} (Product_{k=1..floor(n/2)} (4*(cos(j*Pi/17))^2 + 4*(cos(k*Pi/(n+1)))^2)). In addition, a homogeneous linear recurrence relation of order 256 with constant coefficients is obtained to generate the sequence.

%F a(n) = A187596(16,n) = A187596(n,16). - _Alois P. Heinz_, Jan 10 2021

%e a(1) = 1, since there is only one domino tiling of the 16 X n rectangle, which consists entirely of horizontal tiles.

%e a(2) = 1597 = F(17), since the number of domino tilings of the m X 2 rectangle is the Fibonacci number F(m+1).

%e Note that the terms a(16) and a(33) are even. More generally, for m even, the numbers of domino tilings of the m X m square and of the m X (2m+1) rectangle are even.

%p b:= proc(n, l) option remember; local k;

%p if n=0 then 1

%p elif min(l)>0 then (t-> b(n-t, map(h->h-t, l)))(min(l))

%p else for k while l[k]>0 do od; `if`(n>1, b(n, subsop(k=2, l)), 0)+

%p `if`(k<nops(l) and l[k+1]=0, b(n, subsop(k=1, k+1=1, l)), 0)

%p fi

%p end:

%p a:= n-> b(n, [0$16]):

%p seq(a(n), n=0..15); # _Alois P. Heinz_, Jan 12 2021

%t Do[

%t P = 1; m = 16;

%t Do[

%t P = N[P*(4*Cos[Pi*i/(n + 1)]^2 + 4*Cos[Pi*j/(m + 1)]^2), 1020],

%t {i, 1, n/2}, {j, 1, m/2}];

%t Print["P=", N[P, 1020], " n=", n, " m=", m],

%t {n, 1, 20}

%t ]

%Y Subsequence of A099390.

%Y Cf. A000045, A187596.

%K nonn

%O 0,3

%A A. M. Magomedov and _Serge Lawrencenko_, Jan 10 2021