login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A340431 Primes p such that, with q the next prime after p, q > p+2 and q^p == q (mod p+q) and p^q == p (mod p+q). 0
13, 211, 421, 523, 154321, 221941, 1556641, 2377201, 3918757, 4359961, 7842511, 9163873, 20446561, 1501102081, 7578849037, 15724210681, 25522638481, 52966796353, 68999668237, 109926997057, 112417709113, 209826685297, 694503347201, 963374692897 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

For twin primes p,q we always have p^q == p (mod p+q) and q^p == q (mod p+q).

LINKS

Table of n, a(n) for n=1..24.

EXAMPLE

a(3) = 421 is a term because the next prime is 431, 421^431 == 421 (mod 852) and 431^421 == 431 (mod 852).

MAPLE

q:= 2: R:= NULL:

while p < 10^7 do

p:= q; q:= nextprime(p);

if q-p = 2 then next fi;

if q &^ p mod (p+q) = q and p &^ q mod (p+q) = p then

R:= R, p;

fi;

od:

R;

PROG

(Python)

from sympy import nextprime

A340431_list , p = [], 2

while p <= 10**10:

q = nextprime(p)

if q > p+2:

pq = p+q

if pow(q, p, pq) == q and pow(p, q, pq) == p:

A340431_list.append(p)

p = q # Chai Wah Wu, Jan 12 2021

(PARI) upto(n) = my(p=2); forprime(q = nextprime(p+1), n, if(q-p > 2, if(Mod(p, p+q)^q == p, if(Mod(q, p+q)^p == q, print1(p, ", ")))); p = q); \\ Daniel Suteu, Jan 12 2021

CROSSREFS

Sequence in context: A145270 A296671 A196328 * A251093 A132542 A069989

Adjacent sequences: A340428 A340429 A340430 * A340432 A340433 A340434

KEYWORD

nonn,more

AUTHOR

J. M. Bergot and Robert Israel, Jan 12 2021

EXTENSIONS

a(15)-a(17) from Daniel Suteu, Jan 12 2021

a(18)-a(22) from Chai Wah Wu, Jan 15 2021

a(23)-a(24) from Martin Ehrenstein, Jan 19 2021

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 8 21:28 EST 2022. Contains 358698 sequences. (Running on oeis4.)