login
A340415
Number of sets of nonempty words with a total of n letters over octonary alphabet such that within each word every letter of the alphabet is at least as frequent as the subsequent alphabet letter.
2
1, 1, 3, 13, 60, 326, 2065, 14508, 116845, 676579, 4533285, 29337447, 204274255, 1401597565, 10464806200, 75242714351, 588938921227, 4060713617519, 30141138974325, 217182619165093, 1630762746458645, 11987353708674543, 91946531392941646, 683807822490949653
OFFSET
0,3
LINKS
FORMULA
G.f.: Product_{j>=1} (1+x^j)^A226878(j).
MAPLE
b:= proc(n, i, t) option remember; `if`(t=1, 1/n!,
add(b(n-j, j, t-1)/j!, j=i..n/t))
end:
g:= (n, k)-> `if`(k=0, `if`(n=0, 1, 0), n!*b(n, 0, k)):
h:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(h(n-i*j, i-1, k)*binomial(g(i, k), j), j=0..n/i)))
end:
a:= n-> h(n$2, min(n, 8)):
seq(a(n), n=0..32);
CROSSREFS
Column k=8 of A292795.
Cf. A226878.
Sequence in context: A340412 A340413 A340414 * A340416 A340417 A292796
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jan 06 2021
STATUS
approved