login
A340390
Number of partitions of n into 4 parts such that the largest part is 3 times the smallest part.
1
0, 0, 0, 0, 0, 0, 1, 1, 2, 1, 1, 0, 1, 1, 2, 2, 3, 2, 3, 2, 3, 2, 3, 3, 5, 4, 5, 4, 5, 4, 6, 5, 7, 6, 7, 6, 8, 7, 9, 8, 10, 8, 10, 9, 11, 10, 12, 11, 14, 12, 14, 12, 14, 13, 16, 15, 18, 16, 18, 16, 19, 17, 20, 19, 22, 20, 23, 21, 24, 22, 25, 23, 27, 25, 28, 26, 29, 27, 31, 29
OFFSET
0,9
FORMULA
a(n) = Sum_{k=1..floor(n/4)} Sum_{j=k..floor((n-k)/3)} Sum_{i=j..floor((n-j-k)/2)} [4*k = n-i-j], where [ ] is the Iverson bracket.
MATHEMATICA
Table[Sum[Sum[Sum[KroneckerDelta[4 k, n - i - j], {i, j, Floor[(n - j - k)/2]}], {j, k, Floor[(n - k)/3]}], {k, Floor[n/4]}], {n, 0, 80}]
Table[Count[IntegerPartitions[n, {4}], _?(#[[1]]==3#[[4]]&)], {n, 0, 80}] (* Harvey P. Dale, Mar 25 2021 *)
PROG
(PARI) first(n) = {n--; my(res = vector(n)); for(i = 1, n \ 6, for(j = 6*i, min(10*i, n), res[j] += 1 + min(abs(j - 6*i), abs(j - 10*i))\2 ) ); concat(0, res) } \\ David A. Corneth, Mar 25 2021
CROSSREFS
Sequence in context: A025897 A029421 A156749 * A325280 A039803 A360118
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Jan 06 2021
STATUS
approved