login
A340354
a(n) is the sum, for j < n coprime to n, of the least prime > n congruent to j (mod n).
1
3, 12, 12, 50, 18, 112, 64, 126, 60, 330, 72, 520, 182, 240, 240, 884, 198, 1368, 320, 588, 462, 1886, 360, 1650, 676, 1296, 644, 3074, 390, 4030, 1248, 1848, 1292, 2380, 864, 5328, 1596, 2496, 1280, 6560, 840, 7740, 2112, 2880, 2530, 9588, 1632, 7938, 2250, 4896, 3224, 12402, 1890, 6820, 2968
OFFSET
2,1
COMMENTS
For each n >= 3, a(n) is divisible by n.
LINKS
EXAMPLE
For n=6 the primes are 7 == 1 (mod 6) and 11 == 5 (mod 6), so a(6) = 7+11=18.
MAPLE
f:= proc(n) local t, k, p;
t:= 0:
for k from 1 to n-1 do
if igcd(k, n) = 1 then
for p from n+k by n do
if isprime(p) then
t:= t+p;
break
fi
od
fi
od;
t
end proc:
map(f, [$2..100]);
CROSSREFS
Row sums of A060940 (starting with second row).
Sequence in context: A192788 A336276 A085060 * A263672 A233287 A214528
KEYWORD
nonn,look
AUTHOR
J. M. Bergot and Robert Israel, Jan 05 2021
STATUS
approved