login
A340353
a(n) is the least nonnegative integer value of n^(n+1)/k - (n+1)^n.
1
17, 399, 7849, 22319, 3667649, 24062143, 162261467, 24062575399, 2395420006033, 3450216222287, 3143661612445145, 9699097864062431, 160760166535731149, 25125784419171337983, 11877172892329028459041, 13911873927978371193431, 32347093457545958193355601, 141211970553048451362803599
OFFSET
3,1
LINKS
EXAMPLE
For n = 6, the greatest divisor k of 6^7 such that (6^7)/k > 7^6 is 2, so a(6) = (6^7)/2-7^6 = 22319.
MAPLE
f:= proc(n) local a, b, k;
a:= n^(n+1); b:= (n+1)^n;
k:= max(select(t -> a/t >= b, numtheory:-divisors(a)));
a/k-b
end proc:
map(f, [$3..30]);
CROSSREFS
Sequence in context: A327732 A012200 A340972 * A007925 A097201 A361713
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Jan 05 2021
STATUS
approved