login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A340237 Odd composite integers m such that A052918(3*m-J(m,29)) == 5 (mod m), where J(m,29) is the Jacobi symbol. 3
9, 27, 33, 35, 65, 81, 99, 121, 221, 243, 297, 363, 513, 585, 627, 705, 729, 891, 1089, 1539, 1541, 1881, 2145, 2187, 2299, 2673, 3267, 3605, 4181, 4573, 4579, 5265, 5633, 6721, 6993, 7865, 8019, 8979, 9131, 9801, 10307, 10877, 10881, 13333, 13741, 14001, 14705, 14989 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

The generalized Lucas sequences of integer parameters (a,b) defined by U(m+2)=a*U(m+1)-b*U(m) and U(0)=0, U(1)=1, satisfy U(3*p-J(p,D)) == a (mod p) whenever p is prime, k is a positive integer, b=-1 and D=a^2+4.

The composite integers m with the property U(k*m-J(m,D)) == U(k-1) (mod m) are called generalized Lucas pseudoprimes of level k- and parameter a.

Here b=-1, a=5, D=29 and k=3, while U(m) is A052918(m).

REFERENCES

D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer, 2020.

D. Andrica, O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, Mediterr. J. Math. (to appear, 2021).

D. Andrica, O. Bagdasar, On generalized pseudoprimality of level k (submitted).

LINKS

Table of n, a(n) for n=1..48.

Dorin Andrica, Vlad Cri┼čan, and Fawzi Al-Thukair, On Fibonacci and Lucas sequences modulo a prime and primality testing, Arab Journal of Mathematical Sciences, 2018, 24(1), 9--15.

MATHEMATICA

Select[Range[3, 15000, 2], CoprimeQ[#, 29] && CompositeQ[#] && Divisible[Fibonacci[3*#-JacobiSymbol[#, 29], 5] - 5, #] &]

CROSSREFS

Cf. A052918, A071904, A340095 (a=5, b=-1, k=1), A340120 (a=5, b=-1, k=2).

Cf. A340235 (a=1, b=-1, k=3), A340236 (a=3, b=-1, k=3), A340238 (a=7, b=-1, k=3).

Sequence in context: A276003 A255343 A108107 * A216168 A036303 A325299

Adjacent sequences:  A340234 A340235 A340236 * A340238 A340239 A340240

KEYWORD

nonn

AUTHOR

Ovidiu Bagdasar, Jan 01 2021

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 3 09:18 EST 2021. Contains 341760 sequences. (Running on oeis4.)