OFFSET
0,1
COMMENTS
The terms of sequence A215641 converge to this sequence of digits, and to this constant, up to powers of 10.
FORMULA
c = 0.21110110091000710000310000031000001910000000710000000071000000001...
= Sum_{k >= 1} 10^(-k(k+1)/2)*nextprime(10^(k-1))
a(-n(n+1)/2) = 1 for all n >= 2, followed by increasingly more zeros.
EXAMPLE
The smallest prime with 1, 2, 3, 4, ... digits is, respectively, 2, 11, 101, 1009, .... Here we list the sequence of digits of these numbers: 2: 1, 1; 1, 0, 1; 1, 0, 0, 9; ...
This can be considered, as for the Champernowne and Copeland-Erdős constants, as the decimal expansion of a real constant 0.2111011009...
MATHEMATICA
Flatten[Table[IntegerDigits[NextPrime[10^n]], {n, 0, 20}]] (* Harvey P. Dale, Mar 29 2024 *)
PROG
(PARI) concat([digits(nextprime(10^k))|k<-[0..14]]) \\ as seq. of digits
c(N=20)=sum(k=1, N, .1^(k*(k+1)/2)*nextprime(10^(k-1))) \\ as constant
CROSSREFS
Cf. A003617 (smallest n-digit prime), A215641 (has this as "limit"), A340206 (same for squares, limit of A215689), A340207 (similar, with largest n-digit squares, limit of A339978), A340208 (same for cubes, limit of A215692), A340209 (same with largest n-digit cube, limit of A340115), A340221 (same for semiprimes, limit of A215647).
KEYWORD
AUTHOR
M. F. Hasler, Jan 01 2021
STATUS
approved