OFFSET
0,1
COMMENTS
The terms of sequence A340115 converge to this sequence of digits, and to this constant, up to powers of 10.
FORMULA
c = 0.86472992619733697029999383759989734499700299999939482649996194672...
= Sum_{k >= 1} 10^(-k(k+1)/2)*floor(10^(k/3)-1)^3
a(-n(n+1)/2) = 9 for all n >= 3;
EXAMPLE
The largest cube with 1, 2, 3, 4, ... digits is, respectively, 8 = 2^3, 64 = 4^3, 729 = 9^3, 9261 = 21^3, ..., cf. A061435.
Here we list the sequence of digits of these numbers: 8; 6, 4; 7, 2, 9; 9, 2, 6, 1; ...
This can be considered, as for the Champernowne and Copeland-Erdős constants, as the decimal expansion of a real constant 0.864729926...
PROG
(PARI) concat([digits(sqrtnint(10^k-1, 3)^3)|k<-[1..14]]) \\ as seq. of digits
c(N=20)=sum(k=1, N, .1^(k*(k+1)/2)*sqrtnint(10^k-1, 3)^3) \\ as constant
CROSSREFS
Cf. A061435 (largest n-digit cube), A340115 (has this as "limit"), A340208 (similar, with smallest n-digit cubes, limit of A215692), A340207 (same for squares, limit of A339978), A340220 (same for primes), A340222 (same for semiprimes), A340219 (similar, with smallest primes, limit of A215641), A340221 (similar, with smallest semiprimes, limit of A215647).
KEYWORD
AUTHOR
M. F. Hasler, Jan 01 2021
STATUS
approved