Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #17 Sep 08 2022 08:46:26
%S 211082,2364062,2774165,3379802,3743573,4390682,5651042,5845442,
%T 6708578,7326122,7371482,8566394,8839202,9056282,10154642,10301333,
%U 10325621,10446242,10540202,11238341,11719562,11978762,12377282,12871058,13456202,16840058,16954562,17155141
%N Numbers m such that m, m + 1, m + 2, m + 3 and m + 4 have k, 2k, 3k, 4k and 5k divisors respectively.
%C Numbers m such that tau(m) = tau(m + 1)/2 = tau(m + 2)/3 = tau(m + 3)/4 = tau(m + 4)/5, where tau(k) = the number of divisors of k (A000005).
%C Quintuples of [tau(a(n)), tau(a(n) + 1), tau(a(n) + 2), tau(a(n) + 3), tau(a(n) + 4)] = [tau(a(n)), 2*tau(a(n)), 3*tau(a(n)), 4*tau(a(n)), 5*tau(a(n))]: [4, 8, 12, 16, 20], [4, 8, 12, 16, 20], [4, 8, 12, 16, 20], [8, 16, 24, 32, 40], [4, 8, 12, 16, 20], [4, 8, 12, 16, 20], ...
%C Corresponding values of numbers k: 4, 4, 4, 8, 4, 4, 4, 4, 4, 8, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 8, 4, 4, 4, 4, 4, 4, 4, ...
%C 1524085621 is the smallest prime term (see A294528).
%C Subsequence of A063446, A339778 and A340157.
%e tau(211082) = 4, tau(211083) = 8, tau(211084) = 12, tau(211085) = 16, tau(211086) = 20.
%t Select[Range[5*10^6], Equal @@ (DivisorSigma[0, # + {0, 1, 2, 3, 4}]/{1, 2, 3, 4, 5}) &] (* _Amiram Eldar_, Dec 30 2020 *)
%o (Magma) [m: m in [1..10^6] | #Divisors(m) eq #Divisors(m + 1)/2 and #Divisors(m) eq #Divisors(m + 2)/3 and #Divisors(m) eq #Divisors(m + 3)/4 and #Divisors(m) eq #Divisors(m + 4)/5]
%o (PARI) isok(m) = my(k = numdiv(m)); (numdiv(m+1) == 2*k) && (numdiv(m+2) == 3*k) && (numdiv(m+3) == 4*k) && (numdiv(m+4) == 5*k); \\ _Michel Marcus_, Jan 16 2021
%Y Cf. A000005, A063446, A294528, A339778, A340157, A340159.
%K nonn
%O 1,1
%A _Jaroslav Krizek_, Dec 29 2020