login
A339998
Numbers that are the sum of an even cube s and an odd cube t such that 0 < s < t.
0
35, 133, 189, 351, 407, 559, 737, 793, 945, 1241, 1339, 1395, 1547, 1843, 2205, 2261, 2331, 2413, 2709, 3197, 3383, 3439, 3591, 3887, 3925, 4375, 4921, 4977, 5103, 5129, 5425, 5913, 6119, 6641, 6867, 6923, 7075, 7371, 7657, 7859, 8587, 9009, 9269, 9325, 9477, 9603, 9773
OFFSET
1,1
EXAMPLE
133 is in the sequence since 2^3 + 5^3 = 8 + 125 = 133, with 8 even, 125 odd, and 0 < 8 < 125.
MATHEMATICA
Table[If[Sum[Mod[i + 1, 2] Mod[n - i, 2] (Floor[i^(1/3)] - Floor[(i - 1)^(1/3)]) (Floor[(n - i)^(1/3)] - Floor[(n - i - 1)^(1/3)]), {i, Floor[n/2]}] > 0, n, {}], {n, 1200}] // Flatten
CROSSREFS
Cf. A010057.
Sequence in context: A144492 A192926 A120398 * A039522 A044367 A044748
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Dec 25 2020
STATUS
approved