%I #7 Feb 01 2021 18:08:50
%S 5,17,25,37,45,61,65,73,89,101,109,113,125,145,149,153,169,181,193,
%T 197,205,221,225,245,257,265,277,281,305,317,325,333,337,349,365,373,
%U 377,401,405,409,425,445,449,481,485,493,509,521,533,549,565,569,577,585,601,605,613
%N Numbers that are the sum of an odd square s and an even square t such that 0 < s < t.
%e 17 is in the sequence since 1^2 + 4^2 = 17, 1 is odd, 16 is even, and 0 < 1 < 16.
%t Table[If[Sum[Mod[i, 2] Mod[n - i + 1, 2] (Floor[Sqrt[i]] - Floor[Sqrt[i - 1]]) (Floor[Sqrt[n - i]] - Floor[Sqrt[n - i - 1]]), {i, Floor[n/2]}] > 0, n, {}], {n, 700}] // Flatten
%Y Cf. A000404, A010052, A057653, A097269.
%K nonn
%O 1,1
%A _Wesley Ivan Hurt_, Dec 24 2020