login
Numbers k > 1 for which bigomega(k) <= bigomega(k-1)/2, where bigomega gives the number of prime factors, counted with multiplicity.
4

%I #8 Dec 23 2020 04:11:42

%S 5,7,11,13,17,19,23,25,29,31,33,37,41,43,47,49,53,55,57,59,61,65,67,

%T 71,73,79,82,83,85,89,91,97,101,103,107,109,113,121,127,129,131,133,

%U 137,139,141,145,149,151,157,161,163,167,169,173,177,179,181,185,191,193,197,199,201,205,209,211,217,221,223,226,227

%N Numbers k > 1 for which bigomega(k) <= bigomega(k-1)/2, where bigomega gives the number of prime factors, counted with multiplicity.

%H Antti Karttunen, <a href="/A339911/b339911.txt">Table of n, a(n) for n = 1..17515; all terms <= 65537</a>

%t Select[Range[3, 227, 2], PrimeOmega[#] <= PrimeOmega[# - 1]/2 &] (* _Michael De Vlieger_, Dec 22 2020 *)

%o (PARI) isA339911(n) = ((n>1)&&((2*bigomega(n))<=bigomega(n-1)));

%Y Cf. A001222.

%Y Subsequence of A339910.

%Y Cf. A339908, A339912 for subsequences.

%K nonn

%O 1,1

%A _Antti Karttunen_, Dec 22 2020