login
A339909
Carmichael numbers k for which bigomega(phi(k)) < bigomega(k-1), where bigomega gives the number of prime divisors, counted with multiplicity.
5
1729, 14676481, 84350561, 90698401, 279377281, 382536001, 413138881, 542497201, 702683101, 781347841, 851703301, 939947009, 955134181, 3480174001, 4765950001, 5255104513, 5781222721, 5985964801, 7558388641, 7816642561, 8714965001, 9237473281, 13630072501, 18189007201, 21669076801, 21863001601, 23915494401, 25477682491
OFFSET
1,1
COMMENTS
Natural numbers n that satisfy equation k * phi(n) = n - 1, for some integer k > 1, should all occur in this sequence, if they exist at all. Lehmer conjectured that there are no such numbers.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (calculated using data from Claude Goutier)
D. H. Lehmer, On Euler's totient function, Bulletin of the American Mathematical Society, 38 (1932), 745-751.
MATHEMATICA
carmichaels = Cases[Import["https://oeis.org/A002997/b002997.txt", "Table"], {_, _}][[;; , 2]]; Select[carmichaels, PrimeOmega[EulerPhi[#]] < PrimeOmega[# - 1] &] (* Amiram Eldar, Dec 26 2020 *)
PROG
(PARI)
A002322(n) = lcm(znstar(n)[2]); \\ From A002322
isA339909(n) = ((n>1)&&issquarefree(n)&&!isprime(n)&&(bigomega(eulerphi(n))<bigomega(n-1))&&(0==((n-1)%A002322(n))));
CROSSREFS
Intersection of A002997 and A339908.
Cf. also A339818, A339869, A339878.
Sequence in context: A138130 A306657 A048949 * A339878 A258166 A130876
KEYWORD
nonn
AUTHOR
Antti Karttunen, Dec 22 2020
STATUS
approved