%I #10 Dec 29 2020 20:37:40
%S 1,1,1,1,3,1,5,1,1,3,3,1,1,5,3,1,9,1,11,3,5,3,7,1,9,1,1,5,15,3,9,1,3,
%T 9,15,1,5,11,1,3,21,5,23,3,3,7,13,1,25,9,9,1,29,1,9,5,11,15,15,3,33,9,
%U 5,1,3,3,35,9,7,15,9,1,39,5,9,11,15,1,41,3,1,21,11,5,27,23,15,3,3,3,5,7,9,13,33,1,25,25
%N Fully multiplicative with a(p) = A000265(q-1), where q = A151800(p), the next prime > p.
%H Antti Karttunen, <a href="/A339903/b339903.txt">Table of n, a(n) for n = 1..8191</a>
%H Antti Karttunen, <a href="/A339903/a339903.txt">Data supplement: n, a(n) computed for n = 1..65537</a>
%H <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>
%F a(n) = A336466(A003961(n)) = A000265(A003958(A003961(n))).
%F For all squarefree numbers k, a(k) = A339904(k).
%o (PARI)
%o A000265(n) = (n>>valuation(n,2));
%o A339903(n) = if(1==n,n,my(f=factor(n)); for(i=1,#f~,f[i,1] = nextprime(1+f[i,1])-1); A000265(factorback(f)));
%Y Cf. A000265, A003958, A003961, A005117, A151800, A339904.
%K nonn,mult
%O 1,5
%A _Antti Karttunen_, Dec 29 2020