login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A339885 Triangle read by rows: T(n, m) gives the sum of the weights of weighted partitions of n with m parts from generalized pentagonal numbers {A001318(k)}_{k>=1}. 2
1, 1, 1, 0, 1, 1, 0, 1, 1, 1, -1, 0, 1, 1, 1, 0, -1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 0, -1, -1, 0, 1, 1, 1, 1, 0, -1, -2, -1, 0, 1, 1, 1, 1, 0, 1, -1, -2, 0, 0, 1, 1, 1, 1, 0, 0, 0, -2, -2, 0, 0, 1, 1, 1, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,39

COMMENTS

The row sums are given in A341417.

One could add a row n=0 and the column (1,repeat(0)) including the empty partition with no parts, and number of parts m = 0. The weight w(0) = -1.

The weight from {-1, 0, +1} of a positive number n is w(n) = 0 if n is not an element of the generalized pentagonal numbers {Pent(k) = A001318(k)}_{k>=1}, and if n = Pent(k) then w(n) = (-1)^(ceiling(Pent(k)/2)+1). The sequence

{(n, w(n))}_{n>=1} begins: {(1,+1), (2,+1), (3,0), (4,0), (5,-1), (6,0), (7,-1), ...}. One can also use w(0) = -1. w(n) = -A010815(n), for n >= 0. For n >= 1 w(n) = A257028(n) also.

The weight of a partition is the product of the weights of its parts.

For the triangle giving the sum of the weights of weighted compositions of n with m parts from the generalized pentagonal numbers see A341418.

LINKS

Table of n, a(n) for n=1..66.

FORMULA

T(n, m) = Sum_{j=1..p(n,m)} w(Part(n, m, j)), where p(n, m) = A008284(n, m), and the ternary weight of the j-th partition of n with m parts Part(n,m,j), in Abramowitz-Stegun order, is defined as the product of the weights of the parts, by w(n) = -A010815(n), for n >= 1 and m = 1, 2, ..., n.

EXAMPLE

The triangle T(n, m) begins:

n\m   1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 ... A341417

----------------------------------------------------------------------------

1:    1                                                                 1

2:    1  1                                                              2

3:    0  1  1                                                           2

4:    0  1  1  1                                                        3

5;   -1  0  1  1  1                                                     2

6:    0 -1  1  1  1  1                                                  3

7:   -1 -1 -1  1  1  1  1                                               1

8:    0 -1 -1  0  1  1  1  1                                            2

9:    0 -1 -2 -1  0  1  1  1  1                                         0

10:   0  1 -1 -2  0  0  1  1  1  1                                      2

11:   0  0  0 -2 -2  0  0  1  1  1  1                                   0

12:   1  1  1  0 -2 -1  0  0  1  1  1  1                                4

13:   0  1  1  0 -1 -2 -1  0  0  1  1  1  1                             2

14:   0  2  2  2  0 -1 -1 -1  0  0  1  1  1  1                          7

15:   1  0  1  2  1 -1 -1 -1 -1  0  0  1  1  1  1                       5

16:   0  1  2  2  3  1 -1  0 -1 -1  0  0  1  1  1  1                   10

17:   0  0  0  1  2  2  0 -1  0 -1 -1  0  0  1  1  1  1                 6

18:   0  0  0  2  2  3  2  0  0  0 -1 -1  0  0  1  1  1  1             11

19:   0 -1 -1 -1  1  2  2  1  0  0  0 -1 -1  0  0  1  1  1  1           5

20:   0 -1 -1  0  1  2  3  2  1  1  0  0 -1 -1  0  0  1  1  1  1       10

...

n = 5: (Partition; weight w) with | separating same m numbers (in Abramowitz -Stegun order):

(5;-1) | (1,4;0), (2,3;0) | (1^2,3;0), (1,2^2;1) | (1^3,2;1) | (1^5;1), hence row n=5 is [-1, 0, 1, 1, 1] from the sum of same m weighs.

CROSSREFS

Cf. A000045, A001318, A008284, -A010815, A257028, A341417, A341418.

Sequence in context: A037853 A255237 A291954 * A106799 A212210 A127499

Adjacent sequences:  A339882 A339883 A339884 * A339887 A339888 A339889

KEYWORD

sign,tabl

AUTHOR

Wolfdieter Lang, Feb 15 2021

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 15 01:24 EDT 2021. Contains 342974 sequences. (Running on oeis4.)