login
Primes p such that the absolute value of the fraction A241014(A000720(p)) / p is a record low.
4

%I #25 Sep 07 2021 01:49:53

%S 2,3,5,17,41,101,163,223,251,733,1063,27191,77969,84299,86813,123863,

%T 508771,1677209,11634179,91978037,443127523,467335159,1041968177,

%U 2025051311,13941800291,24178397183,762383958397,766193665711,1551559563569,8030311150847

%N Primes p such that the absolute value of the fraction A241014(A000720(p)) / p is a record low.

%C So-called near-Wall-Sun-Sun primes. Each term is "nearer" to being Wall-Sun-Sun than all smaller primes.

%C If any Wall-Sun-Sun primes exist, this sequence terminates at the smallest Wall-Sun-Sun prime.

%C If you start from p=7 (not p=2), then the sequence will start 7, 13, 17, 41, ... instead.

%H Jeppe Stig Nielsen, <a href="/A339855/b339855.txt">Table of n, a(n) for n = 1..49</a>

%H Ulrich Fries and PrimeGrid, <a href="http://u-g-f.de/PRPNet/findlist_adv.php?proj=WSS">PRPNet findlist for project WSS</a>

%H Reginald McLean and PrimeGrid, <a href="https://www.primegrid.com/stats_ww.php">WW Statistics</a>

%H D. D. Wall, <a href="http://www.jstor.org/stable/2309169">Fibonacci series modulo m</a>, Amer. Math. Monthly, 67 (1960), 525-532.

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Wall-Sun-Sun_prime">Wall-Sun-Sun prime</a>

%o (PARI) rec=+oo;forprime(p=2,,r=abs(centerlift(((Mod([1, 1; 1, 0], p^2))^(p-kronecker(p, 5)-1))[1, 1]))/p^2;if(r<rec,rec=r;print1(p,", ")))

%Y Cf. A241014, A113650, A296240, A347565.

%K nonn

%O 1,1

%A _Jeppe Stig Nielsen_, Dec 19 2020