login
A339775
Primes p such that (p+nextprime(p))/6 is prime and 6*p is the sum of two consecutive primes.
1
5, 7, 13, 37, 127, 389, 719, 937, 3089, 7669, 9199, 12211, 17099, 17519, 18919, 19259, 19273, 19853, 20063, 21379, 22453, 22643, 23059, 23143, 23173, 23753, 24113, 24329, 25339, 25873, 31387, 31667, 32803, 33203, 34057, 34183, 36629, 37253, 37831, 37967, 38557, 39293, 40429, 41039, 42743, 48163
OFFSET
1,1
LINKS
EXAMPLE
a(3) = 13 is a term because 13 is prime, the next prime is 17, (13+17)/6 = 5 is prime, and 6*13 = 78 = 37 + 41 is the sum of consecutive primes.
MAPLE
filter:= proc(p) local q;
if not isprime(p) then return false fi;
q:= prevprime(3*p);
if q + nextprime(q) <> 6*p then return false fi;
q:= (p+nextprime(p))/6;
q::integer and isprime(q)
end proc:
select(filter, [seq(i, i=3..10^5, 2)]);
CROSSREFS
Intersection of A163487 and A288632.
Sequence in context: A294064 A018464 A063446 * A064600 A174874 A109904
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Dec 16 2020
STATUS
approved