OFFSET
1,2
COMMENTS
From Peter Munn, Mar 16 2021: (Start)
The positive integers in the multiplicative subgroup of the positive rationals generated by 8, 6, and A215848 (primes greater than 3).
This subgroup, denoted H, has two cosets: 2H = (1/3)H and 3H = (1/2)H. It follows that the sequence is one part of a 3-part partition of the positive integers with the property that each part's terms are half the even terms of one of the other parts and also one third of the multiples of 3 in the remaining part.
(End)
Positions of multiples of 3 in A276085. Because A276085 is completely additive, this is closed under multiplication: if m and n are in the sequence then so is m*n. - Antti Karttunen, May 27 2024
The coset sequences mentioned in Peter Munn's comment above are A373261 and A373262. - Antti Karttunen, Jun 04 2024
LINKS
Robert Israel, Table of n, a(n) for n = 1..10000
FORMULA
a(n) ~ (91/43)*n.
MAPLE
N:= 1000: # for terms <= N
R:= {}:
for k1 from 0 to floor(N/6) do
for k0 in [1, 5] do
k:= k0 + 6*k1;
for j from 0 while 3^j*k <= N do
for i from (j mod 3) by 3 do
x:= 2^i * 3^j * k;
if x > N then break fi;
R:= R union {x}
od od od od:
sort(convert(R, list)); # Robert Israel, Apr 08 2021
MATHEMATICA
Select[Range[130], Mod[IntegerExponent[#, 2] - IntegerExponent[#, 3], 3] == 0 &]
PROG
(PARI) isA339746 = A372573; \\ Antti Karttunen, Jun 04 2024
(Python)
from sympy import factorint
def ok(n):
f = factorint(n, limit=4)
i, j = 0 if 2 not in f else f[2], 0 if 3 not in f else f[3]
return (i-j)%3 == 0
def aupto(limit): return [m for m in range(1, limit+1) if ok(m)]
print(aupto(200)) # Michael S. Branicky, Mar 26 2021
CROSSREFS
Sequences of positive integers in a multiplicative subgroup of positive rationals generated by a set S and A215848: S={}: A007310, S={6}: A064615, S={3,4}: A003159, S={2,9}: A007417, S={4,6}: A036668, S={3,8}: A191257, S={4,9}: A339690, S={6,8}: this sequence.
KEYWORD
nonn
AUTHOR
Griffin N. Macris, Dec 15 2020
STATUS
approved