%I #8 Dec 15 2020 07:57:39
%S 9,9,9,0,0,5,4,4,2,4,8,0,9,8,9,4,7,5,2,7,3,7,8,4,5,3,5,8,5,4,2,2,7,2,
%T 4,5,8,6,0,5,9,0,9,7,3,8,5,3,6,4,7,3,6,9,0,8,2,2,8,9,6,2,3,9,9,2,8,9,
%U 5,9,9,4,1,9,5,9,8,9,8,1,0,0,7,4,1,1,8,6,0,3,5,0,2,7,7,3,1,7,1,3,0,5,0,9,0,6
%N Decimal expansion of Product_{n>=2} (1 - n^(-10)).
%F Equals (cosh(sqrt((5 - sqrt(5))/2)*Pi) + sin(sqrt(5)*Pi/2)) * (cosh(sqrt((5 + sqrt(5))/2)*Pi) - sin(sqrt(5)*Pi/2)) / (40*Pi^4).
%F Equals exp(Sum_{j>=1} (1 - zeta(10*j))/j).
%e 0.99900544248098947527378453585422724586059097385364736908229...
%p evalf((cosh(sqrt((5 - sqrt(5))/2)*Pi) + sin(sqrt(5)*Pi/2)) * (cosh(sqrt((5 + sqrt(5))/2)*Pi) - sin(sqrt(5)*Pi/2)) / (40*Pi^4), 100);
%t RealDigits[(Cosh[Sqrt[(5 - Sqrt[5])/2]*Pi] + Sin[Sqrt[5]*Pi/2]) * (Cosh[Sqrt[(5 + Sqrt[5])/2]*Pi] - Sin[Sqrt[5]*Pi/2]) / (40*Pi^4), 10, 100][[1]]
%o (PARI) exp(suminf(j=1, (1 - zeta(10*j))/j))
%o (PARI) prodinf(n=2, 1-1/n^10) \\ _Michel Marcus_, Dec 15 2020
%Y Cf. A109219, A175615, A175616, A175617, A175618, A175619.
%K nonn,cons
%O 0,1
%A _Vaclav Kotesovec_, Dec 15 2020