The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A339727 Odd composite integers m such that A086902(3*m-J(m,53)) == 51*J(m,53) (mod m), where J(m,53) is the Jacobi symbol. 3
 9, 25, 49, 51, 69, 91, 105, 143, 145, 153, 185, 221, 225, 325, 339, 391, 425, 441, 481, 637, 645, 705, 805, 833, 897, 925, 1001, 1173, 1189, 1207, 1225, 1281, 1299, 1365, 1541, 1633, 1653, 1785, 1813, 1921, 2325, 2599, 2651, 2769, 3133, 3333, 3381, 3605, 3825, 3897 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The generalized Pell-Lucas sequences of integer parameters (a,b) defined by V(m+2)=a*V(m+1)-b*V(m) and V(0)=2, V(1)=a, satisfy V(k*p-J(p,D)) == V(k-1)*J(p,D) (mod p) whenever p is prime, k is a positive integer, b=-1 and D=a^2+4. The composite integers m with the property V(k*m-J(m,D)) == V(k-1)*J(m,D) (mod m) are called generalized Pell-Lucas pseudoprimes of level k- and parameter a. Here b=-1, a=7, D=53 and k=3, while V(m) recovers A086902(m), with V(2)=51. REFERENCES D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer, 2020. D. Andrica, O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, Mediterr. J. Math. (to appear, 2021). D. Andrica, O. Bagdasar, On generalized pseudoprimality of level k (submitted). LINKS Dorin Andrica, Vlad Crişan, and Fawzi Al-Thukair, On Fibonacci and Lucas sequences modulo a prime and primality testing, Arab Journal of Mathematical Sciences, 24(1), 9-15 (2018). MATHEMATICA Select[Range[3, 4000, 2], CoprimeQ[#, 53] && CompositeQ[#] && Divisible[LucasL[3*# - JacobiSymbol[#, 53], 7] - 51*JacobiSymbol[#, 53], #] &] CROSSREFS Cf. A086902, A071904, A339128 (a=7, b=-1, k=1), A339520 (a=7, b=-1, k=2). Cf. A339724 (a=1, b=-1), A339725 (a=3, b=-1), A339726 (a=5, b=-1). Sequence in context: A051132 A247687 A075026 * A339128 A113659 A325701 Adjacent sequences: A339724 A339725 A339726 * A339728 A339729 A339730 KEYWORD nonn AUTHOR Ovidiu Bagdasar, Dec 14 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 6 03:21 EST 2023. Contains 360091 sequences. (Running on oeis4.)