OFFSET
0,1
COMMENTS
a(n) is the least even number 2*k such that A339708(k)=n.
Conjecture: a(12) = 0, but a(n) > 0 for all other n.
Since this is only a conjecture, the Data stops at a(11)=92.
For n>=13, the sequence continues with 98, 136, 128, 122, 158, 166, 152, 206, 188, 222, 242, 232, 248, 266, 272, 296, 320, 308, 352, 382, 412, 326, 418, 402, 440, 454, 398, 492, 458, 488, 500, 554, 542, 518, 578, 618, 572, 626, 642, 678, 632, ...
LINKS
Robert Israel, Table of n, a(n) for n = 0 .. 800 (with conjectured a(12)=0).
EXAMPLE
a(4) = 28 because we can write 28 = 3+25 = 7+21 = 13+15 = 19+9 where 3, 7, 13 and 19 are odd primes and 25, 21, 15, and 9 are semiprimes, and 28 is the least even number with exactly 4 decompositions of this type.
MAPLE
N:= 10000:
P:= select(isprime, [seq(i, i=3..N, 2)]):S:= sort(select(`<`, [seq(seq(P[i]*P[j], i=1..j), j=1..nops(P))], N)):V:= Vector(N):
for p in P do
for s in S while p+s<=N do V[p+s]:= V[p+s]+1 od
od:R:= Array(0..max(V)):for i from 2 to N by 2 do
v:= V[i];
if R[v] = 0 then R[v]:= i fi
od:convert(R[1..500], list);
CROSSREFS
KEYWORD
nonn,more
AUTHOR
J. M. Bergot and Robert Israel, Dec 13 2020
STATUS
approved