login
A339632
Number of partitions of 2n into two positive integer parts (s,t) such that s and t have the same number of decimal digits and s*t is semiprime.
0
0, 1, 1, 1, 3, 1, 1, 0, 0, 0, 1, 1, 1, 1, 2, 1, 2, 2, 1, 2, 3, 1, 2, 3, 2, 2, 4, 2, 3, 5, 2, 3, 4, 1, 4, 5, 3, 3, 5, 3, 4, 7, 3, 3, 8, 3, 4, 6, 3, 5, 7, 3, 4, 6, 4, 4, 6, 3, 3, 7, 2, 2, 6, 2, 3, 4, 3, 2, 3, 3, 3, 3, 2, 1, 4, 1, 1, 3, 2, 1, 2, 1, 1, 2, 1, 1, 0, 1, 1, 1, 0, 0, 1
OFFSET
1,5
FORMULA
a(n) = Sum_{k=1..n} [Omega(k*(2*n-k)) = 2] * [floor(log_10(k)) = floor(log_10(2*n-k))], where [ ] is the Iverson bracket and Omega is the number of prime factors of n with multiplicity (A001222).
EXAMPLE
a(18) = 0; 18 has 9 partitions into two positive integer parts, (17,1), (16,2), (15,3), (14,4), (13,5), (12,6), (11,7), (10,8), (9,9). There are no partitions whose parts have the same number of decimal digits and whose product is semiprime.
MATHEMATICA
Table[Sum[KroneckerDelta[PrimeOmega[i (2 n - i)], 2] KroneckerDelta[ Floor[Log10[i]], Floor[Log10[2 n - i]]], {i, n}], {n, 100}]
CROSSREFS
Cf. A001222 (Omega), A001358, A055642, A078972.
Sequence in context: A074063 A338211 A115717 * A350879 A115718 A361510
KEYWORD
nonn,base
AUTHOR
Wesley Ivan Hurt, Dec 21 2020
STATUS
approved