login
A339612
Number of sets of distinct positive integers whose sum of squares is a square, the largest integer of a set is n.
3
1, 1, 1, 2, 1, 3, 2, 5, 9, 11, 32, 51, 113, 184, 364, 605, 1175, 2077, 3749, 7108, 12214, 23871, 42474, 82212, 153738, 288842, 555593, 1041563, 2016299, 3809565, 7302893, 13914139, 26591478, 50942383, 97411030, 186943685, 358286670, 689827822, 1326042612, 2558758426
OFFSET
1,4
LINKS
FORMULA
a(n) = A336815(n) - A336815(n-1).
EXAMPLE
a(10) = 11 sets: {10}, {1, 2, 4, 10}, {1, 2, 8, 10}, {2, 4, 7, 10}, {5, 6, 8, 10}, {1, 5, 7, 9, 10}, {3, 4, 6, 8, 10}, {1, 3, 4, 7, 9, 10}, {1, 2, 3, 5, 6, 9, 10}, {1, 2, 5, 7, 8, 9, 10} and {1, 2, 3, 4, 7, 8, 9, 10}.
PROG
(Python)
a = lambda n: b(n-1, n*n, 1) # for b() in A336815
print([a(n) for n in range(1, 30)]) # Michael S. Branicky, Dec 10 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Dec 09 2020
EXTENSIONS
a(24)-a(40) from Michael S. Branicky, Dec 09 2020
STATUS
approved