PROOF OF SLOANE'S OBSERVATION

RAGHAVENDRA TRIPATHI

Before we state our result we fix the following notation. For any positive integer x with binary expansion $\sum_{i=0}^{L} \alpha_{i} 2^{i}$, let

$$
\bar{x}:=\sum_{i=0}^{L} \alpha_{L-i} 2^{i} .
$$

Note that \bar{x} is the integer obtained reversing the binary expansion of x. A crucial thing to note is that \bar{x} is always an odd number (except when $x=0$). Let A_{n} be the set of totally balanced integers with $2 n$ digits in their binary expansion. It is clear that $\left|A_{n}\right|=C_{n}$ where C_{n} is n-th Catalan number. We observe that

$$
\min A_{n}=(1010 \ldots 10)_{2}, \quad \max A_{n}=(1 \ldots 10 \ldots 0)_{2} .
$$

Each set A_{n} is naturally ordered and let $\omega_{k, n}$ denote the k-th element in the set A_{n}, that is, $\omega_{k, n}$ is the k-th totally balanced integer with $2 n$ binary digits.

Theorem 1. Consider the sequence $\left\{\mu_{k, n}: 1 \leq k \leq C_{n}, n \in \mathbb{N}\right\}$ define by

$$
\mu_{k, n}=\frac{\overline{\omega_{k, n}}}{4^{n}} .
$$

Then $\mu_{k, n}$ is the sequence in (2.8).
Proof. Let v_{n} denote the van der Corput sequence. From the definition of the sequence in (2.8), it is clear that the sequence can be relabeled by the index $\left\{(k, n): 1 \leq k \leq C_{n}, n \in \mathbb{N}\right\}$ and

$$
a_{k, n}=v_{\omega_{k, n}},
$$

where $\omega_{k, n}$ is as defined above. It follows from the definition of van der Corput sequence that

$$
v_{\omega_{k, n}}=\frac{\overline{\omega_{k, n}}}{4^{n}}=\mu_{k, n}
$$

Corollary 1. The denominator in the sequence (2.8) is a power of 4 . And each 4^{n} appears in the denominator exactly C_{n} times.

Proof. First of all note that $\overline{\omega_{k, n}}$ is an odd number for each pair k and n. Therefore $\mu_{k, n}=\frac{\overline{\omega_{k, n}}}{4^{n}}$ is in the simplest form. The corollary now follows from Theorem 1.

Department of Mathematics, University of Washington, Seattle, WA 98203, USA
Email address: raghavt@uw.edu

