OFFSET
1,1
COMMENTS
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Also Heinz numbers of strict integer partitions whose smallest part divides all the others (counted by A097986). The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions.
EXAMPLE
The sequence of terms together with their prime indices begins:
2: {1} 29: {10} 59: {17}
3: {2} 30: {1,2,3} 61: {18}
5: {3} 31: {11} 62: {1,11}
6: {1,2} 34: {1,7} 65: {3,6}
7: {4} 37: {12} 66: {1,2,5}
10: {1,3} 38: {1,8} 67: {19}
11: {5} 39: {2,6} 70: {1,3,4}
13: {6} 41: {13} 71: {20}
14: {1,4} 42: {1,2,4} 73: {21}
17: {7} 43: {14} 74: {1,12}
19: {8} 46: {1,9} 78: {1,2,6}
21: {2,4} 47: {15} 79: {22}
22: {1,5} 53: {16} 82: {1,13}
23: {9} 57: {2,8} 83: {23}
26: {1,6} 58: {1,10} 86: {1,14}
MATHEMATICA
Select[Range[2, 100], SquareFreeQ[#]&&With[{p=PrimePi/@First/@FactorInteger[#]}, And@@IntegerQ/@(p/Min@@p)]&]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Apr 10 2021
STATUS
approved