login
A339503
Lesser p of twin primes p,q such that (p*q-2)/3 is prime.
2
5, 11, 17, 41, 101, 149, 179, 227, 431, 461, 641, 821, 1031, 1151, 1229, 1289, 1619, 1697, 1877, 2111, 2129, 2141, 2801, 2999, 3251, 3257, 3299, 3467, 3527, 3671, 3917, 4001, 4049, 4931, 4967, 5501, 5519, 5639, 6299, 6359, 6689, 7307, 7349, 7487, 7547, 7877, 7949, 8009, 8291, 8429, 8597, 8819
OFFSET
1,1
LINKS
EXAMPLE
a(3)=17 is a term because 17 and 19 and (17*19-2)/3 = 107 are primes.
MAPLE
P:= {seq(ithprime(i), i=3..10000)}:
T:= P intersect map(`-`, P, 2):
select(p -> isprime((p*(p+2)-2)/3), T);
MATHEMATICA
Select[Prime@ Range[1100], AllTrue[{#2, (Times @@ {##} - 2)/3}, PrimeQ] & @@ {#, # + 2} &] (* Michael De Vlieger, Dec 07 2020 *)
CROSSREFS
Sequence in context: A184968 A341357 A022004 * A172454 A162001 A171713
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Dec 07 2020
STATUS
approved