login
A339497
Numbers k such that (k*i)^(1/4) is an integer for some i in 1 <= i <= k.
2
1, 4, 8, 9, 16, 25, 27, 32, 36, 48, 49, 54, 64, 72, 81, 100, 108, 121, 125, 128, 144, 162, 169, 192, 196, 200, 216, 225, 243, 250, 256, 288, 289, 324, 343, 361, 375, 384, 392, 400, 405, 432, 441, 484, 486, 500, 512, 529, 567, 576, 625, 640, 648, 675, 676, 686, 729, 768
OFFSET
1,2
LINKS
EXAMPLE
9 is in the sequence since (9*9)^(1/4) = 3 (an integer), with 1 <= 9 <= 9.
MAPLE
filter:= proc(n) local F, x, t;
F:= ifactors(n)[2];
x:= mul(t[1]^(-t[2] mod 4), t=F);
x <= n
end proc:
select(filter, [$1..1000]); # Robert Israel, Dec 29 2020
MATHEMATICA
Table[If[Sum[1 - Ceiling[(n*k)^(1/4)] + Floor[(n*k)^(1/4)], {k, n}] > 0, n, {}], {n, 500}] // Flatten
CROSSREFS
Cf. A339462.
Sequence in context: A109422 A158804 A341645 * A348121 A080366 A001694
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Dec 27 2020
STATUS
approved