login
A339445
Number of partitions of n into squares such that the number of parts is a square.
2
1, 1, 0, 0, 2, 0, 0, 1, 0, 2, 1, 0, 2, 1, 0, 2, 3, 1, 2, 2, 2, 2, 2, 2, 3, 5, 2, 4, 6, 1, 4, 6, 3, 7, 6, 4, 10, 6, 4, 10, 9, 6, 11, 10, 8, 10, 10, 11, 14, 16, 11, 15, 19, 10, 17, 22, 13, 24, 23, 16, 28, 21, 18, 33, 30, 24, 33, 33, 29, 33, 37, 33, 43, 45, 35, 49
OFFSET
0,5
EXAMPLE
[1 1 1]
[1 4] [1 1 1]
a(23) = 2 because we have [9 9] and [4 4 9].
MAPLE
g:= proc(n, k, m)
# number of partitions of n into k parts which are squares > m^2
option remember; local r;
if k = 0 then if n = 0 then return 1 else return 0 fi fi;
if n < k*(m+1)^2 then return 0 fi;
add(procname(n-r*(m+1)^2, k-r, m+1), r =max(0, ceil((k*(m+2)^2-n)/(2*m+3))) .. k)
end proc:
f:= proc(n) local k; add(g(n, k^2, 0), k=1..floor(sqrt(n))) end proc:
f(0):= 1:
map(f, [$0..100]); # Robert Israel, Oct 26 2023
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Dec 05 2020
STATUS
approved