login
A339438
Composite numbers k such that k + A339436(k) is prime.
1
6, 10, 14, 15, 20, 21, 24, 26, 33, 34, 35, 38, 40, 44, 46, 51, 52, 55, 57, 58, 63, 65, 74, 76, 85, 86, 88, 90, 92, 93, 96, 111, 117, 118, 123, 124, 135, 136, 141, 143, 145, 147, 150, 153, 155, 158, 161, 164, 166, 172, 177, 178, 180, 184, 185, 194, 198, 201, 203, 205, 206, 207, 208, 209, 215, 221
OFFSET
1,1
COMMENTS
If n = p_1 * ... * p_m with primes p_i <= p_{i+1}, then p_1 + p_1*p_2 + ... + p_1*p_2*...*p_m + p2*...*p_m + ... + p_m is prime.
LINKS
EXAMPLE
a(5)=20 is a term because 20=2*2*5 and 2+2*2+2*2*5+2*5+5 = 41 is prime.
MAPLE
filter:= proc(n) local L, m;
L:= sort(map(t -> t[1]$t[2], ifactors(n)[2]));
m:= nops(L);
if m=1 then return false fi;
isprime(n + add(mul(L[i], i=1..j)+mul(L[i], i=j+1..m), j=1..m-1))
end proc:
select(filter, [$4..300]);
CROSSREFS
Includes A088709.
Sequence in context: A063763 A115956 A066073 * A268376 A067582 A229153
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Dec 04 2020
STATUS
approved