login
A339424
Composite numbers k such that A339423(k) divides k.
2
4, 6, 9, 10, 12, 14, 15, 21, 22, 25, 26, 33, 34, 35, 36, 38, 39, 46, 49, 51, 55, 56, 57, 58, 62, 65, 69, 74, 77, 82, 85, 86, 87, 91, 93, 94, 95, 106, 108, 111, 115, 118, 119, 121, 122, 123, 129, 133, 134, 141, 142, 143, 145, 146, 155, 158, 159, 161, 166, 169, 177, 178, 183, 185, 187, 194, 201
OFFSET
1,1
LINKS
EXAMPLE
a(5)=12 = 2*2*3 is a term because 2 + 2*2 = 6 divides 12.
MAPLE
filter:= proc(n)
local F, T, P, j;
if isprime(n) then return false fi;
F:= sort(map(t -> t[1]$t[2], ifactors(n)[2]));
T:= 0; P:= 1;
for j from 1 to nops(F)-1 do
P:= P*F[j];
T:= T+P;
od;
n mod T = 0
end proc:
select(filter, [$4..1000]);
CROSSREFS
Union of A001358 and A339425.
Sequence in context: A051278 A328028 A366318 * A175127 A174166 A171401
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Dec 03 2020
STATUS
approved