login
Denominators of s in rational solutions of s^4 + s^3 + s^2 + s + 1 = y^2 with |s| <= 1.
3

%I #17 Nov 15 2021 09:32:22

%S 1,1,3,11,123,808,43993,1404304,113095273,16258517264,5907678749271,

%T 1749162037068984,2230703155726839733,2430407134728632414424,

%U 9811722627654286580946253,28104484948123389151863529007,447820184835469405718954028342863,5093605667758828993168776807306887631

%N Denominators of s in rational solutions of s^4 + s^3 + s^2 + s + 1 = y^2 with |s| <= 1.

%C If abs(A339325(n)) = 1 or a(n) = 1 then n <= 3, i.e., the only integer solutions to s^4 + s^3 + s^2 + s + 1 = y^2 are (s, y) = (-1, +-1), (0, +-1), (3, +-11). This may easily be shown by bounding the LHS between two consecutive perfect squares.

%H Jeremy Tan, <a href="/A339326/b339326.txt">Table of n, a(n) for n = 1..50</a>

%H Jeremy Tan, <a href="https://math.stackexchange.com/q/3604438">Rigid pentagons and rational solutions of s^4+s^3+s^2+s+1=y^2</a>, Mathematics Stack Exchange, Apr 1 2020.

%H Gerard 't Hooft, <a href="https://webspace.science.uu.nl/~hooft101/lectures/meccano.pdf">Meccano Math I</a>

%e The values of s in solutions (s, y) with |s| <= 1 begin -1, 0, 1/3, -8/11, -35/123, 627/808, -20965/43993, ...

%t a[1] = 1; a[2] = 1; a[n_] := Module[{x = 4, y = 2, s, xr}, Do[s = (y-1) / (x-1); xr = s^2 - x + 4; {x, y} = {xr, s(x-xr) - y}, n-2]; s = (2y-x) / (4x-5); Denominator[MinimalBy[{s, 1/s}, Abs][[1]]]]; Table[a[k], {k, 20}] (* _Jeremy Tan_, Nov 15 2021 *)

%o (PARI)

%o a(n) = {

%o [u,v] = ellmul(ellinit([0,-5,0,5,0]), [1,1], n);

%o s = (2*v-u) / (4*u-5);

%o if(abs(s)>1, s=1/s);

%o denominator(s)

%o }

%Y Cf. A339325 (numerators).

%K nonn,frac

%O 1,3

%A _Jeremy Tan_, Nov 30 2020