OFFSET
1,2
COMMENTS
Conjecture: the sum of row n equals A006128(n), the total number of parts in all partitions of n.
LINKS
Paolo Xausa, Table of n, a(n) for n = 1..10980 (rows 1..21 of the triangle, flattened)
EXAMPLE
Triangle begins:
1;
2, 1;
2, 2, 1, 1;
3, 2, 2, 2, 1, 1, 1;
2, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1;
4, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1;
2, 4, 2, 2, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, ...
...
MATHEMATICA
A339258row[n_]:=Flatten[Table[ConstantArray[DivisorSigma[0, n-m], PartitionsP[m]], {m, 0, n-1}]]; Array[A339258row, 10] (* Paolo Xausa, Sep 02 2023 *)
PROG
(PARI) f(n) = sum(k=0, n-1, numbpart(k));
T(n, k) = {if (k > f(n), error("invalid k")); if (k==1, return (numdiv(n))); my(s=0); while (k <= f(n-1), s++; n--; ); numdiv(1+s); }
tabf(nn) = {for (n=1, nn, for (k=1, f(n), print1(T(n, k), ", "); ); print; ); } \\ Michel Marcus, Jan 13 2021
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Omar E. Pol, Nov 29 2020
STATUS
approved