The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A339240 a(n) = n*2^(2*n-2) + n*binomial(2*n,n)/2. 0
 0, 2, 14, 78, 396, 1910, 8916, 40684, 182552, 808614, 3545220, 15414212, 66556584, 285707708, 1220340296, 5189913240, 21988512304, 92850096902, 390913863012, 1641450064084, 6876023427080, 28741451864916, 119902111845208, 499304732388968, 2075821104461136, 8617006998238300 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Horst Alzer and Helmut Prodinger, Identities and Inequalities for Sums Involving Binomial Coefficients, INTEGERS 20 (2020) A9. FORMULA a(n) = Sum_{k=0..n} binomial(n, k)*k*Sum_{j=0..k} binomial(n, j). a(n) = A002697(n) + A002457(n-1), for n>0. G.f.: x*(1/(1 - 4*x)^2 + 1/(1 - 4*x)^(3/2)). - Stefano Spezia, Nov 28 2020 MATHEMATICA a[n_] := n*(2^(2*n - 2) + Binomial[2*n, n]/2); Array[a, 26, 0] (* Amiram Eldar, Nov 28 2020 *) PROG (PARI) a(n) = n*2^(2*n-2) + n*binomial(2*n, n)/2; (PARI) a(n) = sum(k=0, n, binomial(n, k)*k*sum(j=0, k, binomial(n, j))); CROSSREFS Cf. A002697, A002457. Sequence in context: A185055 A034573 A278417 * A133224 A183577 A121200 Adjacent sequences: A339237 A339238 A339239 * A339241 A339242 A339243 KEYWORD nonn AUTHOR Michel Marcus, Nov 28 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 9 15:50 EST 2022. Contains 358700 sequences. (Running on oeis4.)